

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2004

MATHEMATICS

Time Allowed:

Three hours (plus 5 minutes reading time)

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question in a new booklet

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value

	01	02	02	03	03	04	04	05	06	06	10-11-11-11-11-11-11-11-11-11-11-11-11-1
Q	1	2	3	4	5	6	7	8	9	10	Total
M											

Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

QUESTION 1 (12 marks)

(a) Simplify 3x - 6 - (4 - 2x).

1

(b) Fully simplify $\sqrt{27} - \sqrt{3} + \sqrt{18}$.

2

(c) Solve |x-1| = 2x-1.

2

(d) Express 0.69 as a fraction in simplest terms.

2

(e) Solve simultaneously

$$3x - y = 5$$

3

$$5x + 3y = -8$$

(f) Find the integers a and b such that

$$\frac{\sqrt{5}}{2-\sqrt{5}}=a+b\sqrt{5}\;.$$

QUESTION 2 (12 marks)

If A (5, 3), B (-2, 5) and C (4, -3) are points on a number plane find the:

- (a) distance from A to C in surd form; 2
- (b) gradient of the line joining A and C;
- (c) equation of the line passing through A and C;
- (d) perpendicular distance from B to the line passing through A and C; 2
- (e) area of the triangle ABC; 2

2

(f) equation of the line perpendicular to the line AC passing through the midpoint of AC.

QUESTION 3 (12 marks)

(a)

Find x° and y° in the diagram above.

3

(b**)**

In the triangle JKL, JK = 8cm, JN = 9cm and NL = 3cm.

(i) Prove that Δ JMN is similar to Δ JKL.

2

(ii) Find the length of MK.

Question 3 continued

(c) For this parabola find the:

(i) co-ordinates of the vertex;
(ii) focal length;
(iii) co-ordinates of the focus;
(iv) equation of the directrix.

QUESTION 4 (12 marks)

(a) Find the exact arc length of a circle with radius 3cm and an angle subtended at the centre of 60°.

2

(b) Solve $2\cos x = -\sqrt{3}$ for $0 \le x \le 2\pi$.

3

(c) Sketch $y = 3\cos 2x$ and y = x on the same set of axes for $-\pi \le x \le \pi$.

3

(ii) How many solutions does $3\cos 2x = x$ have? You are NOT required to find the solutions. 1

(d) Find the equation of the normal to the curve $y = x \sin x$ at the point $(\pi, 0)$.

QUESTION 5 (12 marks)

Solve $3^{3x-2} = 11$ correct to 2 decimal places. (a)

2

If $y = \log_e \left(\frac{2x+1}{3x-1}\right)$ find $\frac{dy}{dx}$. Hint: use properties of logarithms before differentiating. (b)

2

- (i) $\int \frac{1}{x} + \frac{1}{x^2} dx$ Find (d)

1

(ii) $\int \frac{4x}{x^2 + 1} dx.$

2

- (e) Differentiate with respect to x
 - $y = x^2 \ln x.$

2

Show that $\frac{2}{x+4} + \frac{3}{x-4} = \frac{5x+4}{x^2-16}$. **(f)**

3

Hence find $\int \frac{5x+4}{x^2-16} dx$.

QUESTION 6 (12 marks)

Evaluate each of the following integrals:

(a)
$$\int x^6 - 2x^4 dx$$
.

(b)
$$\int_{-1}^{2} \frac{x^4 + 3x^3 + x^2}{x}.$$

(c)
$$\int \sqrt{3-x} \ dx.$$

(d) The table shows the values of a function f(x) for five x values. 3

x	1	1.5	2	2.5	3
f(x)	1.011	1.179	1.322	1.447	1.559

Approximate the value of $\int_1^3 f(x) dx$ using the five function values and the Trapezoidal rule.

(e) Bob used $A = \int_{\frac{1}{2}}^{2} f(x) dx$ to find the shaded area in the diagram below.

Is this the correct method to use? If not, why not?

QUESTION 7 (12 marks)

- (a) Consider the function $f(x) = 4\sin 2x$.
 - (i) Sketch f(x) for $0 \le x \le 2\pi$.

2

(ii) Using the result of part (i) and symmetry, or otherwise, find the area contained between the function f(x) and the x-axis for $0 \le x \le 2\pi$.

2

(b) The curves $y = x^2$ and $y = 2 - x^2$ intersect at two points, A and B.

2

(i) Find the coordinates of A and B.

(ii) Find the area bounded by the curves $y = x^2$ and $y = 2 - x^2$.

3

(c) Find the volume formed when the curve $y = \frac{\sqrt[3]{x}}{2}$ is rotated about the y-axis between y = 0 and y = 2.

QUESTION 8 (12 marks)

(a) An arithmetic series has a third term of 14 and a seventh term of 30. Find the first term and common difference of the series.

3

(b) Consider the series

$$-2+4(\pi-3)-8(\pi-3)^2+16(\pi-3)^3-+\cdots$$

(i) Explain why the geometric series has a limiting sum.

1

(ii) Find the exact value of the limiting sum.

2

- (c) The velocity, in metres per second, of a particle moving in a straight line is given by $\dot{x} = t^3 7t 7$.
 - (i) Find an expression for the displacement if the particle was initially 6 m to the left of the origin.

2

(ii) Calculate the acceleration of the particle after 3 seconds.

1

(iii) Find the displacement and velocity of the particle after 3 seconds.

2

(iv) Describe the motion of the particle when t = 3 seconds.

QUESTION 9 (12 marks)

Observational evidence suggests that the level of "interest" students have in Mathematics lessons varies during a typical lesson according to $I(t) = 5te^{-2t}$, where I is the interest level, and t is time in hours.

- (a) Show that the first derivative, $\frac{dI}{dt} = 5e^{-2t}(1-2t)$.
- (b) Show that the second derivative, $\frac{d^2I}{dt^2} = 20e^{-2t}(t-1)$.
- (c) At what time during the lesson is the student interest at a maximum?
- (d) When is the level of interest in the lesson decreasing most rapidly, i.e. when is $\frac{dI}{dt}$ at its minimum value?
- (e) Find the location of any points of inflection on the curve $I(t) = 5te^{-2t}$.
- (f) Using your findings from (a) (e) above make a neat sketch of I(t) for 0 < t < 2. Your sketch should include all important features.

QUESTION 10 (12 marks)

(a) According to one cosmological theory, there were equal amounts of uranium isotopes ²³⁵U and ²³⁸U at the creation of the universe in the "big bang".

At present there are 137.7 ²³⁸U atoms for each ²³⁵U atom. Using the half-lives

- 4.51 billion years for ²³⁸U,
- 0.71 billion years for ²³⁵U,

and assuming exponential decay, calculate the age of the universe.

4

- (b) Kippsy the mathematical kangaroo always hops (i.e. jumps) according to mathematical rules. One day, Kippsy decides to go hopping according to the following rules:
 - The length of odd number hops $(1^{st}, 3^{rd}, 5^{th})$ hop etc.), in metres, is given by the arithmetic series $t_n = 4 (n-1)$, where n = 1, 3, 5, ... is an odd number;
 - The length of even number hops $(2^{\text{nd}}, 4^{\text{th}}, 6^{\text{th}})$ hop etc.), in metres, is given by the geometric series $T_N = \frac{192}{63} \left(\frac{1}{2}\right)^{\frac{N-2}{2}}$, where N = 2, 4, 6, ... is an even number;
 - If the length of a hop is negative according to the relevant series, Kippsy hops the prescribed distance *backwards*.
 - (i) Write down the first term and common difference for the series t_n .

1

(ii) Find the total distance hopped by Kippsy (in both directions) after the first 16 hops?

3

(iii) Find where Kippsy is relative to her starting point after 12 hops.

3

(iv) Describe the pattern of Kippsy's hops after she has been hopping for a long time.

1

End of paper

Question 2.
$$\frac{1}{2004}$$
 (a) $\frac{3x-6-(4-2x)}{(4-2x)}$ (c) $\frac{1}{|x-1|=2x-1}$

$$= 3x - 6 - 4 + 2x$$

$$= 5x - 10$$

$$99n = 69$$
 $n = \frac{69}{99}$

$$\frac{f}{2-rs} \times \frac{2+rs}{2+rs}$$

$$x-1=2x-1$$

$$0=x$$

$$x=0$$

$$-x+1=2x-1$$

$$2=3x$$

$$x=\frac{2}{3}$$

(e)
$$3x - y = 5$$
 (i) $\times 3$
 $5x + 3y = -8$ (2)
 $9x - 3y = 15$ (3)

$$a=-5 b=-2$$

(a)
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

(b) $d = \sqrt{(4 - 5)^2 + (-3 - 3)^2}$
 $d = \sqrt{(-1)^2 + (-6)^2}$

$$(b) m = \underbrace{y_2 - y_1}_{x_2 - x_1},$$

$$m = \frac{-3-3}{4-5}$$

$$m = \frac{-6}{-1}$$

$$m = 6$$

$$y - 3 = 6(x-5)$$

$$y - 3 = 6x - 30$$

(d)
$$\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

(e)
$$A = \frac{1}{2}bh$$

 $A = \frac{1}{2}x \sqrt{37} \times \frac{44}{\sqrt{37}}$ (1)
 $A = 22 u^{2}$ (1)

$$\begin{pmatrix}
f \\
mid = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \\
= \left(\frac{5 + 4}{2}, \frac{3 - 3}{2}\right) \\
= \left(\frac{9}{2}, 0\right) \\
= \left(4 \cdot 5, 0\right)$$

$$y-y_1 = m(x-x_1)$$

 $y-0 = -\frac{1}{6}(x-4.5)$
 $y = -\frac{1}{6}x + \frac{3}{4}$

$$= \int \frac{6(-2) + (1)(5) + (-27)}{(6^2 + (-1)^2)} dt$$

$$= \left| \frac{-44}{\sqrt{37}} \right| \approx 7.23 \text{ or } \frac{44}{\sqrt{37}}$$

$$x = 180 - 35 - 35$$

 $x = 110^{\circ}$
 $y = 180 - 110^{\circ}$
 $y = 70^{\circ}$ (2)

$$\frac{(ii)}{12} = \frac{8-x}{8} \quad (i)$$

$$72 = 12(8-x)$$

$$72 = 96 - 12x$$

$$12x = 24$$

$$x = 2$$

(c) (i) vertex =
$$(-3,0)$$
 ()
(ii) focal Length = 2 unts ()
(iii) focus = $(-3,2)$ (2)
(iv) director $y = -2$ (1)

(a)
$$l = r \theta$$

 $l = 3 \times 60\pi$ (1)
 $l = \pi$ (1)

(6)
$$2 \cos x = -\sqrt{3}$$

 $\cos x = -\sqrt{3}$
 $x = 150^{\circ} 210^{\circ}$

$$X = 150^{\circ}, 210^{\circ})$$

$$X = \frac{5\pi}{6}, \frac{7\pi}{6})$$

(d)
$$y = x \sin x$$
 $u = x \quad v = \sin x$
 $u' = 1 \quad v' = \cos x$

$$y' = x\cos x + \sin x$$

$$y' = \pi\cos \pi + \sin \pi$$

$$y' = -\pi \quad \text{yperp} = \frac{1}{\pi}$$

$$y - 0 = \frac{1}{\pi}(x - \pi) \implies y = \frac{x}{\pi} - 1$$

$$\frac{\text{Question 5}}{3^{3x-2}} = 11$$

$$\log_{e} 3^{3x-2} = \log_{e} 11$$

$$(3x-2)\log_{e} 3 = \log_{e} 11$$

$$3x-2 = \log_{e} 11$$

$$3x = \log_{e} 11$$

$$\chi = 11$$

$$\chi = \log_{e} 11$$

(e)
$$y = x^{2}/nx$$
 $u = x^{2}$ $v = \ln x$
 $y' = 2x \ln x + x^{2}$. $\frac{1}{x}$ (f)
 $y' = 2x \ln x + x$ (f)
(f) $\frac{2}{x+4} + \frac{3}{x-4}$
 $= \frac{2(x-4) + 3(x+4)}{x^{2}-16}$ (f)
 $= \frac{2x-8+3x+12}{x^{2}-16}$
 $= \frac{5x+4}{x^{2}-16}$ (f)
 $= \frac{5x+4}{x^{2}-16}$ (f)
 $= \frac{5x+4}{x^{2}-16}$ (f)
 $= \frac{2\log_{e}(x+4) + 3\log_{e}(x-4)}{x^{2}-16}$

$$\frac{\text{Westhan 6}}{(4)} \int x^{6} - 2x^{4} dx$$

$$= \frac{x^{7}}{7} - \frac{2x^{5}}{5} + C \qquad (2)$$

$$(b) \int_{-1}^{2} \frac{x^{4} + 3x^{3} + x^{2}}{x^{2}} dx$$

$$\frac{x^{4}}{x} + \frac{3x^{3}}{x^{2}} + \frac{x^{4}}{x^{2}} \qquad (1)$$

$$\int_{-1}^{2} x^{3} + 3x^{2} + x dx$$

$$= \int \frac{x^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (2)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (2)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (2)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (3)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (4)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (5)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x^{2}}{x^{2}} \qquad (7)$$

$$= \int \frac{2^{4}}{4} + \frac{3x^{3} + x$$

 $= -\frac{2\sqrt{(3-x)^3} + C(1)}{5}$

(a) Trape =
$$\frac{h}{2} \int (1.011 + 1.559) + 2(1.179 + 1.322) + 1.447) \int h = \frac{3-1}{4} A = 0 \int 10.4667 + 1.447) \int h = \frac{1}{2} A = 2.6165 e^{2}$$

(e) ONO Area between $\frac{1}{2}$ and $\frac{1}{2}$ will be regative you need more state $\int \frac{1}{2} f(x) dx$

iii) A = 2 ([2-22-x2]du $2 \left((2-2u^2) du \right) a=0, s=2$ b=1, t=2= 2 [21-213] $= 2 \left[2 - \frac{2}{3} \right] = \frac{9}{3}$ units? ① $2y = x'^{13} \implies 8y^{3} = 3L$ = TE (y2 du DR TE (22 dy. 1) Here, $V = \pi \left(x^2 dy \right)$ $=\pi^{2}$ (4) $0 = 8192\pi$ 0

